A tensile structure is a construction of elements carrying only tension and no compression or bending. The term tensile should not be confused with tensegrity, which is a structural form with both tension and compression elements. Tensile structures are the most common type of thin-shell structures. 

Most tensile structures are supported by some form of compression or bending elements, such as masts (as in The O2, formerly the Millennium Dome), compression rings or beams.

A tensile membrane structure is most often used as a roof, as they can economically and attractively span large distances. Tensile membrane structures may also be used as complete buildings, with a few common applications being sports facilities, warehousing and storage buildings, and exhibition venues

Types of structure with significant tension members:

Linear structures

Three-dimensional structures

Surface-stressed structures

Membrane materials

Common materials for doubly curved fabric structures are PTFE-coated fiberglass and PVC-coated polyester. These are woven materials with different strengths in different directions. The warp fibers (those fibers which are originally straight—equivalent to the starting fibers on a loom) can carry a greater load than the weft or fill fibers, which are woven between the warp fibers. 

Other structures make use of ETFE film, either as single layer or in cushion form (which can be inflated, to provide good insulation properties or for aesthetic effect—as on the Allianz Arena in Munich). ETFE cushions can also be etched with patterns in order to let different levels of light through when inflated to different levels.

In daylight, fabric membrane translucency offers soft diffused naturally lit spaces, while at night, artificial lighting can be used to create an ambient exterior luminescence. They are most often supported by a structural frame as they cannot derive their strength from double curvature.


Cables can be of mild steel, high strength steel (drawn carbon steel), stainless steel, polyester or aramid fibres. Structural cables are made of a series of small strands twisted or bound together to form a much larger cable. Steel cables are either spiral strand, where circular rods are twisted together and "glued" using a polymer, or locked coil strand, where individual interlocking steel strands form the cable (often with a spiral strand core).

Spiral strand is slightly weaker than locked coil strand. Steel spiral strand cables have a Young's modulus, E of 150±10 kN/mm² (or 150±10 GPa) and come in sizes from 3 to 90 mm diameter.[citation needed] Spiral strand suffers from construction stretch, where the strands compact when the cable is loaded. This is normally removed by pre-stretching the cable and cycling the load up and down to 45% of the ultimate tensile load.

Locked coil strand typically has a Young's Modulus of 160±10 kN/mm² and comes in sizes from 20 mm to 160 mm diameter.

The properties of the individuals strands of different materials are shown in the table below, where UTS is ultimate tensile strength, or the breaking load:

E (GPa)


Strain at 50% of UTS

Solid steel bar




Steel strand




Wire rope




Polyester fibre




Aramid fibre